

مدينة زويل للعلوم والتكنولوجيا

Space and Communications Engineering - Autonomous Vehicles Design and Control - Fall 2016

Planning under Uncertainty

Lecture 10 – Thursday December 8, 2016

Objectives

When you have finished this lecture you should be able to:

 Understand MDP and how to use this mathematical framework for planning under uncertainty.

Markov decision process (MDP) provides a mathematical framework for planning under uncertainty.

System	System state is fully observable	System state is partially observable	Planning MDP POMDP Uncertainty
System is autonomous	Markov Chain (MC)	Hidden Markov Model (HMM)	RL
System is controlled*	Markov Decision Process (MDP)	Partially Observable Markov Decision Process (POMDP)	Learning

MDP is used for modeling decision making in situations where outcomes are **partly random** and **partly under the control** of a decision maker.

* Controlled >> ability to change the current state by taking an action or ability to have control over state transitions.

L10, SPC418: Autonomous Vehicles Design and Control- Zewail City of Science and Technology - Fall 2016 © Dr. Alaa Khamis

- Elements of MDP:
 - **States:** $s_1, s_2, ..., s_n$
 - **Actions:** a₁, a₂,a_n
 - State transition matrix
 - T(s,a,s')=p(s'|a,s), which is the probability of reaching state *s* 'from state *s* after taking an action *a*.

Reward function: R(s)

• Grid World Example:

States: Eleven states ((a,4) and (b,4) are terminal states)

Environment is completely **observable**, i.e. observations give correct information about the state of the world.

• Grid World Example (cont'd):

Nondeterministic effects of actions

Note: If the actions are deterministic, probability the success of an action is 1

Actions: Agent moves in the above grid via stochastic actions Up, Down, Left, Right. Each action has:

- ♦ 0.8 probability to reach its intended effect
- O.1 probability to move at right angles of the intended direction
- ♦ If the agents **bumps** into a wall, it says there.

L10, SPC418: Autonomous Vehicles Design and Control- Zewail City of Science and Technology - Fall 2016 © Dr. Alaa Khamis

Grid World Example (cont'd):

Reward:

 $R(s) = \begin{cases} -3 & \text{(small penalty) for nonterminal states} \\ \pm 100 & \text{for terminal states} \end{cases}$

Total Reward:

$$E\left[\sum_{t=0}^{\infty}R_{t}\right]$$

Discounted Rewards: $E\left|\sum_{t=0}^{\infty} \gamma^{t} R_{t}\right|$

where

 γ is the **discount factor** that decays the **future rewards** relative to more **immediate reward** γ=0.9

• Grid World Example (cont'd):

A policy for an MDP is a single decision function $\pi(s)$ that specifies what the agent should do for each state **s**.

A policy assigns action to any state: $\pi(s): S \to A$

Planning problem is how to find an optimal policy that maximizes the discounted rewards

• Grid World Example (cont'd):

Deterministic Environment

Stochastic Environment

Why conventional planning such as A* cannot be used in stochastic environments?

- ♦ Branching factor is large
- ♦ Tree is too deep
- ♦ Many states visited more than once

Grid World Example (cont'd): Value Iteration

Value function given a policy π

$$V^{\pi}(s) = E_{\pi}\left[\sum_{t} \gamma^{t} R_{t} \mid s_{0} = s\right]$$

Value Iteration is used to recursively

4 calculate the value function of each state

The expected value of following policy π in state *s*

L10, SPC418: Autonomous Vehicles Design and Control- Zewail City of Science and Technology - Fall 2016 © Dr. Alaa Khamis

Value Iteration Algorithm

1: **Procedure** Value_Iteration(S,A,P,R,θ)

2: Inputs

- 3: S is the set of all states
- 4: A is the set of all actions
- 5: P is state transition function specifying p(s'|s,a)
- 6: R is a reward function R(s,a,s')
 - θ a threshold, $\theta > 0$

8: **Output**

7:

9:

- π [S] approximately optimal policy
- 10: V[S] value function

11: Local

- 12: real array $V^{\pi}[S]$ is a sequence of value functions
- 13: action array π [S]

Value Iteration Algorithm (cont'd)

- 14: $assign V_o[S]$ arbitrarily
- 15: k ←0
- 16: repeat
- 17: $k \leftarrow k+1$
- 18: for each state s do

19:
$$V^{\pi}(s) \leftarrow \max_{a} \gamma \sum_{s'} p(s' \mid s, a) v(s') + R(s)$$

- 20: **until** $\forall s |V^{\pi}(s) v(s')| < \theta$
- 21: **for** each state s do
- 22: $\pi(s) = \arg \max_{a} \sum_{s'} p(s' | s, a) V(s')$ 23: **return** π
- 23: return π , ^{*a*} $\overline{s'}$

Grid World Example (cont'd): Value Iteration

$$V^{\pi}(s) \leftarrow \max_{a} \gamma \sum_{s'} p(s' \mid s, a) v(s') + R(s)$$

Assume:

- Stochastic outcome of actions with 0.8 probability of success
- ♦ Initial expected values are zeros
- ♦ γ =1 for simplicity
- ♦ Rewards

 $R(s) = \begin{cases} -3 & \text{(small penalty) for nonterminal states} \\ \pm 100 & \text{for terminal states} \end{cases}$

Grid World Example (cont'd): Value Iteration

$$V^{\pi}(s) \leftarrow \max_{a} \gamma \sum_{s'} p(s' \mid s, a) v(s') + R(s)$$

$$\Rightarrow \text{ State a3: Moving West } = V^{W}(a3) = 0.8 \times 0 + 0.1 \times 0 + 0.1 \times 0 - 3 = -3$$

♦ State a3: Moving North [™]

0 0 0 +100a b 0 -1000 0 0 -3 С START 2 3 1

 $V^{N}(a3) = 0.8 \times 0 + 0.1 \times 0 + 0.1 \times 100 - 3 = 10 - 3 = 7$

♦ State a3: Moving South

 $V^{s}(a3) = 0.8 \times 0 + 0.1 \times 0 + 0.1 \times 100 - 3 = 10 - 3 = 7$

♦ State a3: Moving East ⊟

$$V^{E}(a3) = 0.8 \times 100 + 0.1 \times 0 + 0.1 \times 0 - 3 = 80 - 3 = 77$$

L10, SPC418: Autonomous Vehicles Design and Control- Zewail City of Science and Technology - Fall 2016 © Dr. Alaa Khamis

• Grid World Example (cont'd): Value Iteration

$$V^{\pi}(s) \leftarrow \max_{a} \gamma \sum_{s'} p(s' \mid s, a) v(s') + R(s)$$

♦ State a3:

$$V^{\pi}(a3) \leftrightarrow \max_{a} \left\{ V^{W}(a3), V^{N}(a3), V^{S}(a3), V^{E}(a3) \right\} \quad \mathbf{c} \quad \mathbf{s}_{\mathsf{TART}} \quad \mathbf{0}$$

$$\leftarrow \max_{a} \left\{ -3, 7, 7, 77 \right\} \quad \mathbf{1} \quad \mathbf{2}$$

$$\leftarrow 77$$

Repeat for all the other states...

Quiz: calculate the values if R(s)=0 for all nonterminal states...

0

0

a

b

0

77

0

0

3

+100

-100

-3

4

• Grid World Example (cont'd): Policy

$$V^{\pi}(s) \leftarrow \max_{a} \gamma \sum_{s'} p(s' \mid s, a) v(s') + R(s)$$
$$\pi(s) = \arg\max_{a} \sum_{s'} p(s' \mid s, a) V(s')$$

Search and Rescue Example

- An autonomous vehicle in a search and rescue mission in an unknown environment that is affected by natural disaster or humanmade disaster.
- In every state, the robot must choose between moving (M) to collect more information from the environment or staying (S) to sample information remotely.

- Moving may result in a **risk** on the robot but makes the robot more **certain**.
- ♦ Staying makes the robot more **safe** but **uncertain** about the environment.

Search and Rescue Example

γ=0**.**9

S

Risk &

Uncertain

+0

1/2

Safe &

Uncertain

+10

M

1/2

1/2

1/2

1/2

1/2

Μ

1/2

Search and Rescue Example

$$V^{\pi}(s) \leftarrow \max_{a} \gamma \sum_{s'} p(s' \mid s, a) v(s') + R(s)$$

- ♦ **State RU: Move** $V^{M}(RU) = 0.9(0.5 \times 0 + 0.5 \times 0) + 0 = 0$
- \Rightarrow **State RU: Stay** $V^{S}(RU) = 0.9(1 \times 0) + 0 = 0$
- ♦ State RU: $V^{\pi}(RU) \leftrightarrow \max_{a} \{V^{M}(RU), V^{S}(RU)\}$ $\leftarrow \max_{a} \{0, 0\}$ $\leftarrow 0$

1

Μ

1

M

Risk &

Certain

+0

S

Safe &

Certain

+10

1/2

1/2

S

1/2

Search and Rescue Example

$$V^{\pi}(s) \leftarrow \max_{a} \gamma \sum_{s'} p(s' \mid s, a) v(s') + R(s)$$

- ♦ State RC: Move $V^{M}(RC) = 0.9(1 \times 0) + 0 = 0$
- ♦ State RC: Stay

 $V^{S}(RC) = 0.9(0.5 \times 0 + 0.5 \times 10) + 0 = 4.5^{\circ}$

♦ State RC:

$$V^{\pi}(RC) \leftrightarrow \max_{a} \left\{ V^{M}(RC), V^{S}(RC) \right\}$$

$$\leftarrow \max_{a} \left\{ 0, 4.5 \right\}$$

$$\leftarrow 4.5$$

S

Risk &

Uncertain

1/2

1/2

Μ

1

Μ

Risk &

Certain

Search and Rescue Example

$$V^{\pi}(s) \leftarrow \max_{a} \gamma \sum_{s'} p(s' \mid s, a) v(s') + R(s)$$

- ♦ **State SC: Move** $V^{M}(SC) = 0.9(1 \times 0) + 10 = 10$
- ♦ State SC: Stay

 $V^{S}(SC) = 0.9(0.5 \times 10 + 0.5 \times 10) + 10 = 19$

♦ State SC:

$$V^{\pi}(SC) \leftrightarrow \max_{a} \{V^{M}(SC), V^{S}(SC)\}$$

$$\leftarrow \max_{a} \{10, 19\}$$

$$\leftarrow 19$$

S

Risk &

Uncertain

+0

1/2

1/2

Safe &

Uncertain

+10

M

1/2

1/2

1/2

Μ

1/2

Search and Rescue Example

$$V^{\pi}(s) \leftarrow \max_{a} \gamma \sum_{s'} p(s' \mid s, a) v(s') + R(s)$$

- ♦ **State SU: Move** $V^{M}(SU) = 0.9(0.5 \times 0 + 0.5 \times 0) + 10 = 10^{\frac{1}{2}}$
- ♦ State SU: Stay

 $V^{s}(SU) = 0.9(0.5 \times 0 + 0.5 \times 10) + 10 = 14.5^{\circ}$

♦ State SU:

$$V^{\pi}(SU) \leftrightarrow \max_{a} \{V^{M}(SU), V^{S}(SU)\}$$

$$\leftarrow \max_{a} \{10, 14.5\}$$

$$\leftarrow 14.5$$

1

Μ

1

M

Risk &

Certain

+0

S

Safe &

Certain

+10

1/2

1/2

S

1/2

Search and Rescue Example

Summary of first iteration

$$\pi(s) = \arg\max_{a} \sum_{s'} p(s' \mid s, a) V(s')$$

State	RU	RC	SC	SU
V	0	4.5	19	14.5
$\pi(s)$	M/S	S	S	S

Repeat a number of iterations until convergence (small change in the values of the states)

