

مدينة زويال للملوم والتكنولوجيا

Space and Communications Engineering - Autonomous Vehicles Design and Control - Fall 2016

Planning under Uncertainty

Lecture 10 – Thursday December 8, 2016

Objectives

When you have finished this lecture you should be able to:

• Understand **MDP** and how to use this mathematical framework for **planning under uncertainty**.

Markov decision process (MDP) provides a mathematical framework for planning under uncertainty.

MDP is used for modeling decision making in situations where outcomes are **partly random** and **partly under the control** of a decision maker.

* Controlled >> ability to change the current state by taking an action or ability to have control over state transitions.

L10, SPC418: Autonomous Vehicles Design and Control- Zewail City of Science and Technology - Fall 2016 © Dr. Alaa Khamis

- **Elements of MDP:**
	- **States:** s_1 , s_2 , s_n
	- **Actions:** $a_{\text{\tiny 1}},$ $a_{\text{\tiny 2}},$ …. $a_{\text{\tiny n}}$ **State transition matrix**
	- $T(s,a,s')=p(s'|a,s)$, which is the probability of reaching state *s'* from state *s* after taking an action *a*.

Reward function: R(s)

 $|1|$

• **Grid World Example:**

States: Eleven states ((a,4) and (b,4) are terminal states)

Environment is completely **observable**, i.e. observations give correct information about the state of the world.

• **Grid World Example (cont'd):**

0.8 0.1

Nondeterministic effects of actions

Note: If the actions are deterministic, probability the success of an action is 1

Actions: Agent moves in the above grid via stochastic actions Up, Down, Left, Right. Each action has:

- ◊ **0.8 probability** to reach its intended effect
- **0.1 probability** to move at right angles of the intended direction
- ◊ If the agents **bumps** into a wall, it says there.

L10, SPC418: Autonomous Vehicles Design and Control - Zewail City of Science and Technology - Fall 2016 © Dr. Alaa Khamis 6/2266 0 6/2266 0 6/2266 0 6/2266 0 6/2266 0 6/2266 0 6/2266 0 6/2266 0 6/2266 0 6/2266 0 6/2266 0 6

• **Grid World Example (cont'd):**

Reward:

 ± 100 for 1 $\begin{array}{c} \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \end{array}$ $\vert -3 \vert$ (sma) ± 100 for ter -3 (small possible) $=\left\{\begin{array}{cc} 5 & \text{cm} \\ 1 & 126 & 3 \end{array}\right.$ -3 (small penalty) for nonterminal states
100 for terminal states $R(s) = \begin{cases} 0 & \text{if } s \leq 1 \end{cases}$

Total Reward:

$$
E\left[\sum_{t=0}^{\infty} R_t\right]
$$

Discounted Rewards:

$$
E\left[\sum_{t=0}^{\infty} \gamma^t R_t\right]
$$

 Γ_{∞} Γ

where

 is the **discount factor** that decays the **future rewards** relative to more **immediate reward** $\gamma = 0.9$

• **Grid World Example (cont'd):**

A policy for an MDP is a single decision function **π(s)** that specifies what the agent should do for each state **s**.

A policy assigns action to any state: $\pi(s)$: $S \to A$

Planning problem is how to find an **optimal policy that maximizes the discounted rewards**

• **Grid World Example (cont'd):**

Deterministic Environment

Stochastic Environment

Why conventional planning such as A* cannot be used in stochastic environments?

- ◊ Branching factor is large
- ◊ Tree is too deep
- \diamond Many states visited more than once

• **Grid World Example (cont'd): Value Iteration**

Value function given a policy π

$$
V^{\pi}(s) = E_{\pi} \left[\sum_{t} \gamma^{t} R_{t} \mid s_{0} = s \right]
$$

Value Iteration is used to recursively

calculate the value function of each state 4

The expected value of following policy π in state *s*

L10, SPC418: Autonomous Vehicles Design and Control - Zewail City of Science and Technology - Fall 2016 © Dr. Alaa Khamis 10

• **Value Iteration Algorithm**

1: **Procedure** Value_Iteration(S,A,P,R,θ)

2: **Inputs**

- 3: S is the set of all states
- 4: A is the set of all actions
- 5: P is state transition function specifying $p(s'|s,a)$
- 6: R is a reward function $R(s,a,s')$
- 7: θ a threshold, θ >0

8: **Output**

- 9: $\pi[S]$ approximately optimal policy
- 10: V[S] value function

11: **Local**

- 12: real array $V^{\pi}[S]$ is a sequence of value functions
- 13: α action array $\pi[S]$

• **Value Iteration Algorithm (cont'd)**

- 14: assign $V_o[S]$ arbitrarily
- 15: $k \leftarrow 0$
- 16: **repeat**
- 17: $k \leftarrow k+1$
- 18: for each state s do

19:
$$
V^{\pi}(s) \leftarrow \max_{a} \gamma \sum_{s'} p(s' | s, a) v(s') + R(s)
$$

20: **until**
$$
\forall s
$$
 $|V^{\pi}(s) - v(s')| < \theta$

21: **for** each state s do

22:
\n
$$
\pi(s) = \arg \max \sum p(s' | s, a)V(s')
$$

23: **return** π, *s a* V^{π}

• **Grid World Example (cont'd): Value Iteration**

$$
V^{\pi}(s) \leftarrow \max_{a} \gamma \sum_{s'} p(s' | s, a) v(s') + R(s)
$$

Assume: b | 0

- ◊ Stochastic outcome of actions with 0.8 probability of success
- ◊ Initial expected values are zeros
- $\Diamond \ \gamma = 1$ for simplicity
- ◊ Rewards

l ┤ \int \pm $=\begin{cases} -3 & \text{small penalty)}\ 100 & \text{for terminal states} \end{cases}$ 3 (small penalty) for nontermina l states *R*(*s*)

• **Grid World Example (cont'd): Value Iteration**

$$
V^{\pi}(s) \leftarrow \max_{a} \gamma \sum_{s'} p(s' | s, a) v(s') + R(s) \qquad \text{a } \begin{array}{|c|c|} \hline \mathbf{0} \\ \hline \mathbf{0} \end{array}
$$
\n
$$
\diamond \text{ State } \text{a3: Moving West} \overset{\pi}{\underset{s}{\leftarrow}} \begin{array}{|c|c|} \hline \mathbf{0} \\ \hline \text{by} \\ \hline \text{by} \\ \hline \end{array}
$$
\n
$$
V^{W}(a3) = 0.8 \times 0 + 0.1 \times 0 + 0.1 \times 0 - 3 = -3 \qquad \text{c } \begin{array}{|c|c|} \hline \text{by} \\ \hline \text{by} \\ \hline \text{by} \\ \hline \end{array}
$$

◇ **State a3: Moving North** $\sqrt[n]{\uparrow}$

 $0 \mid 0 \mid 0$ $+100$ a Ω -100 $0 \mid 0 \mid -3$ **START** $\overline{2}$ 3 $\mathbf{1}$ 4

 $V^N(a3) = 0.8 \times 0 + 0.1 \times 0 + 0.1 \times 100 - 3 = 10 - 3 = 7$

◊ **State a3: Moving South**

 $V^{S}(a3) = 0.8 \times 0 + 0.1 \times 0 + 0.1 \times 100 - 3 = 10 - 3 = 7$

◊ **State a3: Moving East**

$$
V^{E}(a3) = 0.8 \times 100 + 0.1 \times 0 + 0.1 \times 0 - 3 = 80 - 3 = 77
$$

L10, SPC418: Autonomous Vehicles Design and Control - Zewail City of Science and Technology - Fall 2016 © Dr. Alaa Khamis 14

• **Grid World Example (cont'd): Value Iteration**

$$
V^{\pi}(s) \leftarrow \max_{a} \gamma \sum_{s'} p(s' | s, a) v(s') + R(s)
$$

◊ **State a3:** 0

$$
V^{\pi}(a3) \leftrightarrow \max_{a} \left\{ V^{W}(a3), V^{N}(a3), V^{S}(a3), V^{E}(a3) \right\} \quad \text{c} \quad \boxed{\text{start} \quad \text{o} \quad \text{c} \quad \text{c} \quad \text{d} \quad \text{d} \quad \text{d} \quad \text{d} \quad \text{d} \quad \text{d} \quad \text{e} \quad \text{d} \quad \text{f} \quad \text{f}
$$

Repeat for all the other states…

Quiz: calculate the values if R(s)=0 for all nonterminal states...

 $0 \mid -3$

 $+100$

 -100

4

 Ω

3

 $0 \mid 0 \mid 77$

a

• **Grid World Example (cont'd): Policy**

Values after convergence

$$
V^{\pi}(s) \leftarrow \max_{a} \gamma \sum_{s'} p(s' | s, a) v(s') + R(s)
$$

$$
\pi(s) = \arg \max_{a} \sum_{s'} p(s' | s, a) V(s')
$$

[1]

• **Search and Rescue Example**

- ◊ An **autonomous vehicle** in a search and rescue mission in an unknown environment that is affected by natural disaster or humanmade disaster.
- \diamond In every state, the robot must choose between **moving (M)** to collect more information from the environment or **staying (S)** to sample information remotely.

- ◊ Moving may result in a **risk** on the robot but makes the robot more **certain**.
- ◊ Staying makes the robot more **safe** but **uncertain** about the environment.

• **Search and Rescue Example**

 $\gamma = 0.9$

• **Search and Rescue Example**

$$
V^{\pi}(s) \leftarrow \max_{a} \gamma \sum_{s'} p(s' | s, a) v(s') + R(s)
$$

- ◊ **State RU: Move** $V^M(RU) = 0.9(0.5 \times 0 + 0.5 \times 0) + 0 = 0$ ^{1/2}
- ◊ **State RU: Stay** $V^{S}(RU) = 0.9(1 \times 0) + 0 = 0$
- ◊ **State RU:** \leftarrow max $\{0,0\}$ $\leftarrow 0$ *a*

Risk & Uncertain $+0$

1/2

1/2

S

1

 $1/2$

1

Risk &

 $+0$

S

1/2

1

 $M \searrow 1/2$ \qquad Certain \qquad M

 $1/2$

 N 1/2

1/2

• **Search and Rescue Example**

$$
V^{\pi}(s) \leftarrow \max_{a} \gamma \sum_{s'} p(s' | s, a) v(s') + R(s)
$$

- ◊ **State RC: Move** $V^M (RC) = 0.9(1 \times 0) + 0 = 0$
- ◊ **State RC: Stay**

V (*RC*) 0.9(0.50 0.510) 0 4.5 *S*

◊ **State RC:**

$$
V^{\pi}(RC) \leftrightarrow \max_{a} \{V^{M}(RC), V^{S}(RC)\}
$$

$$
\leftarrow \max_{a} \{0,4.5\}
$$

$$
\leftarrow 4.5
$$

Risk & Uncertain $+0$

S

1

1

Risk &

 $+0$

 $M \searrow 1/2$ \qquad Certain \qquad M

 $1/2$

 $\mathsf{N}^{1/2}$

• **Search and Rescue Example**

$$
V^{\pi}(s) \leftarrow \max_{a} \gamma \sum_{s'} p(s' | s, a) v(s') + R(s)
$$

- ◊ **State SC: Move** $V^M (SC) = 0.9(1 \times 0) + 10 = 10$
- ◊ **State SC: Stay**

 V^S (*SC*) = 0.9(0.5×10+0.5×10)+10 = 19

◊ **State SC:**

$$
V^{\pi}(SC) \leftrightarrow \max_{a} \{V^{M}(SC), V^{S}(SC)\}
$$

$$
\leftarrow \max_{a} \{10,19\}
$$

$$
\leftarrow 19
$$

Risk & Uncertain $+0$

S

1

1/2

Safe & Uncertain $+10$

1/2

 \overline{M}

1/2

• **Search and Rescue Example**

$$
V^{\pi}(s) \leftarrow \max_{a} \gamma \sum_{s'} p(s' | s, a) v(s') + R(s)
$$

- ◊ **State SU: Move** $V^M(SU) = 0.9(0.5 \times 0 + 0.5 \times 0) + 10 = 10^{1/2}$
- ◊ **State SU: Stay**

 $V^S(SU) = 0.9(0.5\!\times\!0\!+\!0.5\!\times\!10) \!+\! 10\!=\!14.5\,\forall\,\,\,$ ^{pane &}) .

◊ **State SU:**

$$
V^{\pi}(SU) \leftrightarrow \max_{a} \{V^{M}(SU), V^{S}(SU)\}
$$

$$
\leftarrow \max_{a} \{10, 14.5\}
$$

$$
\leftarrow 14.5
$$

1

Safe & Certain $+10$

Risk &

 $+0$

S

1/2

1

 M

 $M \searrow 1/2$ \qquad Certain \qquad M

1/2

S

 $1/2$

1/2

 $1/2$

 $\mathsf{N}^{1/2}$

• **Search and Rescue Example**

Summary of first iteration

$$
\pi(s) = \arg\max_{a} \sum_{s'} p(s' | s, a)V(s')
$$

Repeat a number of iterations until convergence (small change in the values of the states)

